a2 United States Patent

Grosman et al.

US009229970B2

US 9,229,970 B2
Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHODS TO MINIMIZE
COMMUNICATION IN A CLUSTER
DATABASE SYSTEM

(735)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

Inventors: Ronen Grosman, Thornhill (CA);
Matthew A. Huras, Ajax (CA);
Timothy R. Malkemus, Round Rock,
TX (US); Keriley K. Romanufa,
Scarborough (CA); Aamer Sachedina,
Queensville (CA); Kelly W. Schlamb,
Richmond Hill (CA); Nickolay V.
Tchervenski, Newmarket (CA); Xun
Xue, Markham (CA)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 701 days.

Appl. No.: 12/632,750

Filed: Dec. 7, 2009

Prior Publication Data

US 2011/0137874 Al Jun. 9, 2011

Int. CL.

GO6F 17/00 (2006.01)

GO6F 17/30 (2006.01)

GO6F 11/14 (2006.01)

U.S. CL

CPC GO6F 17/30368 (2013.01); GOG6F 17/30353
(2013.01); GOGF 17/30377 (2013.01); GO6F

11/1471 (2013.01)

Field of Classification Search

None

See application file for complete search history.

Node performs update
operation on shared
database abject.

Node wiites log record for
update operation,
including local VTS, into

Flush log

records In local
buffer?

Node sends requiest to
LFS server for LFS

number,

Node receives LFS
number from LFS server.

Node inserts LFS number
inta log records in local

buffer.

(56) References Cited
U.S. PATENT DOCUMENTS
6,510,421 B1* 1/2003 Ganesh et al.
6,856,993 Bl 2/2005 Verma et al.
6,981,061 B1* 12/2005 Sakakura 709/248
7,260,589 B2 8/2007 Cotner et al.
7,512,636 B2 3/2009 Verma et al.
7,739,677 B1* 6/2010 Kekreetal. 717/168
8,099,396 B1* 1/2012 Novicketal.c....... 707/661
2003/0061537 Al 3/2003 Chaetal.
2005/0144368 Al* 6/2005 Chungetal. 711/103
2006/0041660 Al 2/2006 Bishop et al.
2006/0218206 Al 9/2006 Bourbonnais et al.
2007/0239791 Al* 10/2007 Cattell etal. 707/200
2008/0120470 Al* 5/2008 Dhamankar et al. .. 711/135
2012/0102265 Al* 4/2012 Congetal.ccoeuenene. 711/103
2013/0110766 Al* 5/2013 Promhouse etal. 707/607
FOREIGN PATENT DOCUMENTS
EP 0625762 A2 11/1994
WO W02009108409 Al 9/2009

* cited by examiner

Primary Examiner — Hosain Alam

Assistant Examiner — Thu Nga Nguyen

(74) Attorney, Agent, or Firm — North Shore Patents, P.C.;
Michele Liu Baillie; Lesley A. Leonessa

(57) ABSTRACT

An ordering of operations in log records includes: performing
update operations on a database object by a node; writing log
records for the update operations into a local buffer by the
node, the log records each including a local virtual times-
tamp; determining that a log flush to write the log records in
the local buffer to a persistent storage is to be performed; in
response, sending a request from the node to a log flush
sequence server for a log flush sequence number; receiving
the log flush sequence number by the node; inserting the log
flush sequence number into the log records in the local buffer;
and performing the log flush to write the log records in the
local buffer to the persistent storage, where the log records
written to the persistent storage comprises the local virtual
timestamps and the log flush sequence number.

20 Claims, 5 Drawing Sheets

301

306

Log records in local buffer]
with local VTS and LFS

number flushed to ~

persistent storage.

307

RETURN

US 9,229,970 B2

Sheet 1 of 5

Jan. 5, 2016

U.S. Patent

| "Old

0cZ | sseqejed

74

UOI}02UU0IJU| MJOMIDN

61| spiooay Bo -LL

811 184ngd

_ €11 apon weiboid _

QL wnipay
ajgepeay Jaindwo)

_ /0| 108889014

0| SPON

Q1| spiooay BoT -LL

Gl1 484ngd

_ Z11 @poo weiboig _

601 Wnipay
a|gepeay Jaindwon

90| lossaoold

€019pPON

/1| Spiooay BoT -LL

¥l 134ng

_ I 1| @poD welbold

801 WnIpsy
a|gepeay Jayndwosn

G0 | Jossaaold

19AI9S 5471/201 SPON

101 s|uBID

wealshg
Purssaooid ejeq

U.S. Patent

250

251

252

253

254

255
256

Jan. 5, 2016 Sheet 2 of 5 US 9,229,970 B2
Diagram 1
Node 1 Node 2
201 | Transaction Start
Insert into courses ('cscd457', | Transaction Start
202 |‘computability and VTS=1
complexity”)
VTS=18
Insert into courses (‘csc347',
203 ‘data structures’);
(VTS=20)
204 | Commit (VTS=20) Commit (VTS=21)
Diagram 2
Node 1 Node 2 Wall clock time
Transaction Start 10:00
Insert into courses (‘csc457’, | Transaction Start
‘computability and VTS=1)
" 11:00
complexity’)
VT5=19
Insert into courses (‘keri,
‘9508314007, 12:00
(VTS=2)
Insert into courseStudents
(‘csc457", 'keri’); (VTS=3) 13:00
Other activities on this node
causes other increases in
this node’s VTS
Commit VTS = 1000 15:00
Commit (VTS = 4) 16:00

FIG. 2

U.S. Patent

Jan. 5§, 2016 Sheet 3 of 5

Node performs update

operation on shared
database object.

!

Node writes log record for
update operation,
including local VTS, into

local buffer.

No Flush log

records in local
buffer?

Node sends request to
LFS server for LFS
number.

r

Node receives LFS
number from LFS server.

Node inserts LFS number
into log records in local 1
buffer.

Log records in local buffer
with local VTS and LFS
number flushed to
persistent storage.

k. 4

(RETURN)

FIG. 3

301

302

303

304

305

306

307

US 9,229,970 B2

U.S. Patent

401

402

403

404

405

406

407

Jan. 5, 2016

Sheet 4 of 5

Node 1

Node 2

Transaction Start

Insert into courses (‘csc457’,
‘computability and
complexity’)

VTS=1

Transaction Start
VTS=1

Insert into students (‘kerf’,
‘950831400');
(VTS=2)

Other activities on this node
causes other increases in
this node’'s VTS

Commit VTS = 1000
(Flush log (LFS=1,
VTS=1000)

Insert into courseStudents
(‘cscd57’, ‘Keri); (VTS=3)

Commit
(Flush Log (LFS=2,VTS=4)

FIG. 4

US 9,229,970 B2

U.S. Patent Jan. 5,2016 Sheet 5 of 5 US 9,229,970 B2

201

Obtain last stored /‘/

database image

Determine lowest LFS 502
number occurring after
database image was
stored.

' 503
Determine log records in /J

persistent storage with 4
LFS number.

Perform operations in log 504
records on databse image,/\/
506 | in sequence according to

/\/ VTS’s of log records.

Determine next
lowest LFS number

F 3

205

ore operations to
recover?

Yes

RETURN

FIG. 5

US 9,229,970 B2

1
METHODS TO MINIMIZE
COMMUNICATION IN A CLUSTER
DATABASE SYSTEM

BACKGROUND

In a shared database system, multiple nodes or members
modify shared resources, and each node writes logs recording
the operations local to the node. These logs can then be used
in a recovery operation in the event of a crash of the shared
database system. During a recovery operation, the operations
recorded in the logs are applied against objects in the last
image of the database stored prior to the crash. In order to
return the database back to the condition just prior to the
crash, these operations must be applied in the order in which
they originally occurred. For example, a delete a row opera-
tion must be applied after the operation which inserted the
row. One approach for ensuring proper ordering utilizes hard-
ware support for a synchronized global clock which puts a
global timestamp on every log record. A synchronized global
clock requires specialized hardware such as a sysplex timer
found on certain mainframe systems. Another approach is a
Lamport clock algorithm, where a virtual timestamp (VTS) is
exchanged between nodes when nodes naturally communi-
cate with each other.

A shared disk database system using common hardware
lacks a sysplex timer, and thus a synchronized global clock
approach is not possible. Further, although the Lamport clock
algorithm works well for database objects that are shared
between nodes, the Lamport clock algorithm does not work
well for logically dependent operations that do not share a
database object. Thus, both approaches are inadequate for a
share database system.

BRIEF SUMMARY

According to one embodiment of the present invention, a
method for ordering operations in log records in a shared
database system includes: performing one or more update
operations on a database object by a node in the shared data-
base system; writing one or more log records for the update
operations into a local bufter by the node, the log records each
comprising a local virtual timestamp; determining that a log
flush to write the log records in the local buffer to a persistent
storage is to be performed; in response to determining that the
log flush is to be performed, sending a request from the node
to a log flush sequence server for a log flush sequence num-
ber; receiving the log flush sequence number by the node
from the log flush sequence server; inserting the log flush
sequence number into the log records in the local buffer; and
performing the log flush to write the log records in the local
buffer to the persistent storage, wherein the log records writ-
ten to the persistent storage comprises the local virtual times-
tamps and the log flush sequence number.

In a further embodiment of the invention, a database recov-
ery process is determined to be performed. In response, a
lowest log flush sequence number occurring after the data-
base image was stored is determined; log records in the per-
sistent storage comprising the lowest log flush sequence num-
ber are determined, the determined log records comprising
the lowest log flush sequence number further comprising
associated virtual timestamps; and operations in the log
records comprising the lowest log flush sequence number are
performed in an order according to the associated virtual
timestamps.

Further, a next lowest log flush sequence number is deter-
mined; a second set of log records in the persistent storage

10

20

25

30

35

40

45

55

60

65

2

comprising the next lowest log flush sequence number is
determined, the second set of log records further comprising
a second set of associated virtual timestamps; and operations
in the second set of log records comprising the next lowest log
flush sequence number are performed in an order according to
the second set of associated virtual timestamps.

System and computer program products corresponding to
the above-summarized methods are also described and
claimed herein.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates an example data processing system uti-
lizing an embodiment of the present invention.

FIG. 2 illustrates an example of the Lamport clock algo-
rithm for two nodes in the shared database system.

FIG. 3 is a flowchart illustrating an embodiment of a
method for providing the log flush sequence service accord-
ing to the present invention.

FIG. 4 illustrates the example in FIG. 2 using the log flush
sequence number.

FIG. 5 is a flowchart illustrating an embodiment ofa recov-
ery process using the log flush sequence service of the present
invention.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable

US 9,229,970 B2

3

medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java®
(Java, and all Java-based trademarks and logos are trade-
marks of Sun Microsystems, Inc. in the United States, other
countries, or both), Smalltalk, C++ or the like and conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages.
The program code may execute entirely on the user’s com-
puter, partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer special purpose computer or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions

30

35

40

45

50

55

60

65

4

for implementing the specified local function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

FIG. 1 illustrates an example data processing system uti-
lizing an embodiment of the present invention. The system
includes a plurality of clients 101 operatively coupled to a
cluster of host computers or nodes 102-104. The nodes 102-
104 co-operate with each other to provide coherent shared
storage access to the database 120 from any of the nodes
102-104. Data are stored in the database in the form of tables.
Each table includes a plurality of pages, and each page
includes a plurality of rows or records. The clients 101 can
connect to any ofthe nodes 102-104 and see a single database.
Each node 102-104 is operatively coupled to a processor
105-107 and a computer readable medium 108-110. The
computer readable medium 108-110 stores computer read-
able program code 111-113 for implementing the various
embodiments of the present invention.

As the node 102-104 performs operations on the rows of
the database 120, these operations are recorded locally in log
records 117-119 in their respective local buffer 114-116. Peri-
odically, the log records 117-119 are flushed from the local
buffers 114-116 to persistent storage 121, i.e., the log records
117-119 in the local buffers 114-116 are written to persistent
storage 121 where they are merged with log records from
other nodes.

In an embodiment of the present invention, the data pro-
cessing system uses the Lamport clock algorithm, where a
virtual timestamp (VTS) is exchanged between the nodes
102-104 when the nodes 102-104 naturally communicate

US 9,229,970 B2

5

with each other. Each node 102-104 maintains its own local
VTS. Every time a node 102 receives a VTS from another
node 103, the node 102 sets its own local VTS to the maxi-
mum of'its own current local VTS and the received VTS. For
example, whenever a copy of a shared object or page is read,
the VTS on the object/page is also read, and the node’s local
VTS is increased to at least this value.

When a node 102 performs an update operation on a page/
object, the node 102 writes a log record 117 in its local buffer
114 and includes the local VTS value, plus 1, in the log record
117. The node local VTS value is also incremented. If the
page/object is subsequently transferred to another node 103
and updated there, the Lamport clock algorithm will cause the
other node 103 to update its own local VTS to at least the
value on the object/page. Then, when the node 103 performs
the update, and writes a log record 118 into its local buffer
115, the VTS used will be larger than the existing VTS on the
page. This ensures that updates to all shared resources are
guaranteed to accurately capture the order of changes to the
object.

Diagram 1 in FIG. 2 illustrates an example of the Lamport
clock algorithm for two nodes in the shared database system.
In this example, Node 1 starts a transaction (201) and per-
forms an insert operation into the “courses” table (202), and
the page where the data is inserted is assigned the current VTS
atNode 1 (VTS=19). Node 2 also starts a transaction (202) to
perform an insert operation into the same “courses” table
(203). Reading the data page after Node 1°s insert also reads
the VTS=19, and Node 2 increments its local VTS to at least
this value, plus 1, for the next insert (VIS=20). When the
transaction in Node 1 commits, the VITS=20 (204). When the
transaction in Node 2 commits, the VI'S=21 (204). During a
recovery process, the operations in the log records are applied
in sequence according to the VTS’s of the log records, and
thus the operations would be applied in the correct order.

The Lamport clock algorithm works well for operations on
objects that are shared and correctly orders the operations in
the log records from a plurality of nodes. However, the Lam-
port clock algorithm does not work well for logically depen-
dent operations which do not share a database object. This is
demonstrated in Diagram 2 in FIG. 2.

In the example in Diagram 2, Node 1 starts a transaction
(250) to insert the course ‘csc457°, ‘computability and com-
plexity’ into the “courses” table (251) when its local VTS=19.
Node 2 also starts a transaction (251) when its local VTS=1.
The transaction by Node 2 includes inserting a student ‘keri’
into the “students” table (252) when its local VIS=2, and
inserting ‘csc457’ as a course that ‘keri’ is taking into the
“courseStudents” table (253) when its local VTS=3.
Although in these operations, Nodes 1 and 2 do not perform
operations on the same table, the order in which these opera-
tions are performed is important. Before a student can be
inserted as taking a particular course, the course must first be
inserted into the “courses” table. These operations by Nodes
1 and 2 are thus logically dependent. Before the transaction at
Node 2 commits, other activities (254) at Node 1 causes
increases to its local VTS so that when the transaction com-
mits, the VTS at Node 1=1000 (255). Then, the transaction at
Node 2 commits (256) when its local VTS=4. Although the
transaction at Node 1 is committed prior to the transaction at
Node 2, the VTS’s fail to reflect this order. This is due to the
fact that, although the transactions at Nodes 1 and 2 are
logically dependent operations, they do not pertain to the
same table. Since they do not pertain to the same table, the
VTS’s are not exchanged between Nodes 1 and 2, and thus are
not synchronized.

15

20

25

30

40

45

50

55

60

65

6

Another example of the limitations of the Lamport clock
algorithm includes a single logical stream of transactions
where successive transactions in the stream may be routed to
different nodes in the shared database system for load balanc-
ing purposes. In this example, there would be no inherent
need for data to be transmitted between the different nodes
running the different transactions, and therefore no opportu-
nity for a Lamport clock VTS to be synchronized. Therefore,
two transactions that are executed in a given order during run
time may be replayed at recovery time in a different order.

An embodiment of the present invention provides the
proper ordering of events for logically dependent operations
that do not share a database object through the use of a global
sequence number. In this specification, the global sequence
number is termed “Log Flush Sequence” number or LFS
number, and the providing of the global sequence number is
termed an “LFS service”. The LFS service leverages that fact
that no event occurring on a first node can be externally
observed to occur before a different event in a second node
unless the log record associated with the first event was writ-
ten to persistent storage 121 before the event on the second
node begins. For example, to modify any object in the data-
base 120, a node 102 must write a log record 117 first to its
local buffer 114. To update the same object on another node
103, the object must first be transferred to node 103. This
transfer requires that the log record 117 associated with the
first update at node 102 be flushed to persistent storage 121
before the modification by node 103 begins.

The LFS service provides a unique, monotonically increas-
ing sequence number upon request from any node in the
shared database system. Requesting of an LFS occurs when-
ever a log flush is to occur to write locally stored log records
at a node into persistent storage. Thus, the requesting of an
LFS is only necessary to ensure that externally observable
ordering of events is preserved. Any of the nodes 102-104 in
the shared database system may function as an LFS server to
provide the LFS service. The LFS server receives requests for
a LFS number from any of the nodes in the cluster and returns
a current LFS number to the requesting node.

FIG. 3 is a flowchart illustrating an embodiment of a
method for providing the LFS service according to the present
invention. When a node, such as node 104, performs an
update operation on a shared database object (301), the node
104 writes a log record 119 for the update operation, includ-
ing a local VTS, into its local buffer 116 (302). Whenever
node 104 is to flush the log records 119 in the local buffer 116
(303), node 104 sends a request to the LFS server 102 for a
LFS number (304). The LFS server 102 receives the request
and responds with the current LFS number. The LFS server
102 then increments the current LFS number. The node 104
receives the LFS number from the LFS server 102 (305), and
inserts the LFS number into the log record 119 in the local
buffer 116 (306). The log records 119 in the local buffer 116
with the local VIS’s and the LFS number are flushed to
persistent storage 121 (307), where they are merged with log
records from other nodes. Note that since a log flush typically
flushes multiple log records to persistent storage using a
single [/O operation, the cost of obtaining a LFS number is
amortized among all of the log records written out in the
single 1/O operation.

FIG. 4 illustrates the example of Diagram 2 (in FIG. 2),
using the LFS number. Node 1 starts a transaction (401) to
insert course ‘csc457’, ‘computability and complexity’ into
the “courses” table (402) when its local VIS=1. Node 2 also
starts a transaction (402) when its local VTS=1. The transac-
tion by Node 2 includes inserting a student ‘keri’ into the
“students” table (403) when its local VIS=2. In the mean-

US 9,229,970 B2

7

time, other activities (404) at host computer 1 cause increases
to its local VTS so that when the transaction commits, the
VTS at Node 1=1000 (405). Nodes 1 and 2 each write log
records into their respective local buffers for the operations,
including the local VTS’s. After the commit at Node 1, Node
1 performs a log flush. During this log flush, Node 1 sends a
request to the LFS server 102 for the LFS number. Assume
that Node 1 receives LFS=1 from the LFS server 102, and
Node 1 inserts LFS=1 into the log records in its local buffer.
After returning LFS=1 to Node 1, the LFS server 102 incre-
ments the LFS=2. Then, Node 2 inserts ‘csc457’ as a course
that ‘keri’ is taking into the “courseStudents” table (406)
when its local VIS=3. The transaction at Node 2 commits
(407) when its local VIS=4. When Node 2 performs a log
flush, Node 2 sends a request to the LFS server 102 for the
LFS number. Assume that Node 2 receives LFS=2 from the
LFS server 102, and Node 2 inserts LFS=2 into the log
records in its local buffer. The log records for Nodes 1 and 2
thus include log records with their respective local VI'S’s as
well as the global LFS numbers. The global LFS numbers
orders the commits globally, while the VT'S’s order the opera-
tions within the same global LFS number. In this manner,
although Nodes 1 and 2 do not perform operations on the
same table, the transactions are ordered correctly for replay
during a recovery process.

In this embodiment of the present invention, additional log
records that are gathered on a node after the node has
requested an LFS number from the LFS server are not asso-
ciated with the LFS number. Otherwise, an erroneous order-
ing may result. For example, assume the following events: (1)
Node A requests an LFS number and is given LFS=5; (2)
Node B requests an LFS number and is given LFS=6; (3)
Transaction 1 commits on Node A, and it is included in flush
6; and (4) Transaction 2 commits on Node B, and it is included
in flush 5. In this example, Transaction 1 completes after
Transaction 2. However, if Transaction 2 is assigned the
LFS=6 received prior to the commit, the LFS numbers would
erroneously indicate that Transaction 2 completed after
Transaction 1.

FIG. 5is a flowchart illustrating an embodiment ofa recov-
ery process using the LFS service of the present invention.
When a database crashes and a recovery process begins, the
last stored database image is obtained (501). The operations
that occurred on the database after the database image was
stored are then performed on the database image. In perform-
ing these operations, the lowest LFS number occurring after
the database image was stored is determined (502). The log
records in persistent storage 121 with the LFS number are
determined (503). The operations in these log records are then
performed on the database image in an order according to the
VTS’s of the log records (504). As long as more operations
are to be performed on the database image, the next lowest
LFS number is determined (506), and the process (503-505)
repeats.

Returning to the example in FIG. 4, assume that the two
illustrated transactions are to be recovered. The log records in
persistent storage 121 with LFS=1 are determined (503). In
this example, the operations include the insert into the
“courses” table with VTS=1, the commit with a VTS=1000,
and other activities in-between. These operations are then
performed in sequence according to the VIS’s of the log
records (504). Thus, the insert into the “courses” table (402),
the commit (405), and the activities in-between (404) are
performed in order. The LFS number is then incremented to
LFS=2 (506). The log records in persistent storage 121 with
LFS=2 are determined (503). In this example, the operations
include the insert into the “students™ table (403), the insert
into the “courseStudents” table (406), and the commit (407).

10

15

20

25

30

35

40

45

50

55

60

65

8

These operations are then performed in an order according to
the VTS’s of the log records (504). As illustrated, although the
commit at Node 1 has a higher VTS number than the insert
into the “courseStudents” table and the commit at Node 2, the
operations on Node 1 are performed first based on the LFS
numbers of the log records. In this manner, the operations are
performed in the correct order during the recovery process.

In an alternative embodiment of the present invention,
instead of recording the LFS in every log record by anode, the
LFS may be recorded only in a single location associated with
all the logrecords in a given log flush (e.g., in a single log page
header), saving storage space.

In another alternative embodiment of the present invention,
an efficient protocol may be implemented to duplex the LFS
information in a standby or secondary LFS server. Any of the
nodes, such as node 103, may function as the standby LFS
server. In an embodiment of this protocol, an LFS is recorded
at the standby LFS server 103 periodically, rather than after
each increment of the LFS at the primary LFS server 102,
thereby minimizing communication overhead. For example,
the primary LFS server 102 may only record an LFS number
to the standby LFS server 103 after issuing 1000 LFS num-
bers. The message the primary LFS server 102 sends to the
standby LFS server 103 at this time instructs the standby LFS
server 103 to record an LFS of least 2000. When the primary
LFS server 102 reaches LFS=2000, the primary LFS server
102 sends another message to the standby LFS server 103 to
ensure that the secondary LFS server 103 is now recording at
least LFS=3000. This protocol ensures that if the primary
LFS server 102 fails, the standby LFS server 103 can take
over while preserving the monotonically increasing property
of'the LFS, without significantly impacting performance.

What is claimed is:
1. A method for ordering operations in log records in a
shared database system, comprising:
maintaining a proper ordering for a database recovery pro-
cess for logically dependent operations that do not share
database objects by:
performing one or more first update operations of a first
transaction on a first database object in a first table by
a first node of a plurality of nodes in the shared data-
base system;
writing one or more first log records for the first update
operations into a first local buffer of the first node, the
log first records comprising first local virtual times-
tamps indicating an order of the first update opera-
tions;
in response to determining that a first log flush to write
the first log records in the first local buffer to a global
persistent storage shared by the plurality of nodes is to
be performed, obtaining from a log flush sequence
server a first global log flush sequence number to
correspond to the first log flush;
inserting the first global log flush sequence number into
the first log records;
performing the first log flush to write the first log records
in the first local buffer to the global persistent storage,
wherein the first log records written to the global
persistent storage comprise the first local virtual
timestamps and the first global log flush sequence
number;
performing one or more second update operations of a
second transaction on a second database object in a
second table by a second node of the plurality of
nodes, wherein the first transaction is required to be
committed by the first node before the second trans-

US 9,229,970 B2

9

action is performed by the second node because the
second transaction is logically dependent on the first
transaction and the first database object is different
than the second database object;

10

inserting the first global log flush sequence number into a
single location associated with all of the first log records
in the first local buffer.

6. A computer program product for ordering operations in

writing one or more second log records for the second 5 log records in a shared database system, the computer pro-

update operations into a second local buffer of the
second node, the second log records comprising sec-
ondlocal virtual timestamps indicating an order of the
second update operations, wherein the first and the
second local virtual timestamps do not reflect a
required commit order for the first and the second
transactions;

in response to determining that a second log flush to
write the second log records to the global persistent
storage is to be performed, obtaining from the log
flush sequence server a second global log flush
sequence number to correspond to the second log
flush;

inserting the second global log flush sequence number
into the second log records;

performing the second log flush to write the second log
records in the second local buffer to the global persis-
tent storage, wherein the second log records written to
the global persistent storage comprise the second
local virtual timestamps and the second global log
flush sequence number; and

merging the second log records with the first log records in

the global persistent storage, wherein the first global log
flush sequence number and the second global log flush
sequence number indicate a commit order of the first and
the second transactions.

2. The method of claim 1, further comprising:

determining that the database recovery process is to be

performed;

in response to determining that the database recovery pro-

cess is to be performed, obtaining a last stored database
image;
determining a lowest global log flush sequence number
occurring after the database image was stored;

determining log records in the global persistent storage
comprising the lowest global log flush sequence num-
ber, the determined log records comprising the lowest
global log flush sequence number further comprising
associated local virtual timestamps; and

performing operations in the log records comprising the

lowest global log flush sequence number in an order
according to the associated local virtual timestamps.

3. The method of claim 2, further comprising:

determining a next lowest global log flush sequence num-

ber;

determining a second set of log records in the global per-

sistent storage comprising the next lowest global log
flush sequence number, the second set of log records
further comprising a second set of associated local vir-
tual timestamps; and

performing operations in the second set of log records

comprising the next lowest global log flush sequence
number in an order according to the second set of asso-
ciated local virtual timestamps.

4. The method of claim 1, wherein the inserting the first
global log flush sequence number into the first log records
comprises:

inserting the first global log flush sequence number into

each of the first log records in the first local buffer.

5. The method of claim 1, wherein the inserting the first
global log flush sequence number into the first log records
comprises:

10

15

20

25

30

35

40

45

50

55

60

65

gram product comprising:

a computer readable storage device having computer read-
able program code embodied therewith, computer read-
able program code configured to:
maintain a proper ordering for a database recovery process
for logically dependent operations that do not share
database objects by:
performing one or more first update operations on a first
database object in a first table by a first node of a
plurality of nodes in the shared database system;

writing one or more first log records for the first update
operations into a first local buffer of the first node, the
first log records comprising first local virtual times-
tamps indicating an order of the first update opera-
tions;

in response to determining that a first log flush to write
the first log records in the first local buffer to a global
persistent storage is to be performed, obtaining from a
global log flush sequence server a first log flush
sequence number to correspond to the first log flush;

inserting the first global log flush sequence number into
the first log records; and

performing the first log flush to write the first log records
in the first local buffer to the global persistent storage,
wherein the first log records written to the global
persistent storage comprise the first local virtual
timestamps and the first global log flush sequence
number;

performing one or more second update operations of a
second transaction on a second database object in a
second table by a second node of the plurality of
nodes, wherein the first transaction is required to be
committed by the first node before the second trans-
action is performed by the second node because the
second transaction is logically dependent on the first
transaction and the first database object is different
than the second database object;

writing one or more second log records for the second
update operations into a second local buffer of the
second node, the second log records comprising sec-
ondlocal virtual timestamps indicating an order of the
second update operations, wherein the first and the
second local virtual timestamps do not reflect a
required commit order for the first and the second
transactions;

in response to determining that a second log flush to
write the second log records to the global persistent
storage is to be performed, obtaining from the log
flush sequence server a second global log flush
sequence number to correspond to the second log
flush;

inserting the second global log flush sequence number
into the second log records;

performing the second log flush to write the second log
records in the second local buffer to the global persis-
tent storage, wherein the second log records written to
the global persistent storage comprise the second
local virtual timestamps and the second global log
flush sequence number; and

merging the second log records with the first log records
in the global persistent storage, wherein the first glo-
bal log flush sequence number and the second global

US 9,229,970 B2

11

log flush sequence number indicate a commit order of
the first and the second transactions.

7. The product of claim 6, wherein the computer readable
program code is further configured to:

determine that the database recovery process is to be per-

formed;

in response to determining that the database recovery pro-

cess is to be performed, obtain a last stored database
image;
determine a lowest global log flush sequence number
occurring after the database image was stored;

determine log records in the global persistent storage com-
prising the lowest global log flush sequence number, the
determined log records comprising the lowest global log
flush sequence number further comprising associated
local virtual timestamps; and

perform operations in the log records comprising the low-

est global log flush sequence number in an order accord-
ing to the associated local virtual timestamps.

8. The product of claim 7, wherein the computer readable
program code is further configured to:

determine a next lowest global log flush sequence number;

determine a second set of log records in the global persis-

tent storage comprising the next lowest global log flush
sequence number, the second set of log records further
comprising a second set of associated local virtual
timestamps; and

perform operations in the second set of log records com-

prising the next lowest global log flush sequence number
in an order according to the second set of associated
local virtual timestamps.

9. The product of claim 6, wherein the computer readable
program code configured to insert the first global log flush
sequence number into the first log records is further config-
ured to:

insert the first global log flush sequence number into each

of' the first log records in the first local buffer.

10. The product of claim 6, wherein the computer readable
program code configured to insert the first global log flush
sequence number into the first log records is further config-
ured to:

insert the first global log flush sequence number into a

single location associated with all of the first log records
in the first local buffer.

11. A system, comprising:

a global persistent storage;

a log flush sequence server; and

a first node of a plurality of nodes of a shared database

system, the first node comprising a first local buffer and

a first computer readable storage medium having com-

puter readable program code embodied therewith, the

first computer readable program code configured to:

maintain a proper ordering for a database recovery pro-
cess for logically dependent operations that do not
share database objects by:

performing one or more first update operations on a first
database object in a first table by the first node;

writing one or more first log records for the first update
operations into the first local buffer of the first node,
the first log records comprising first local virtual
timestamps indicating an order of the first update
operations;

in response to determining that a first log flush to write
the first log records in the first local buffer to the
global persistent storage shared by the plurality of
nodes is to be performed, obtaining from the log flush

12

sequence server a first global log flush sequence num-
ber to correspond to the first log flush;

inserting the first global log flush sequence number into
the first log records; and

performing the first log flush to write the first log records
in the first local buffer to the global persistent storage,
wherein the first log records written to the global
persistent storage comprise the first local virtual
timestamps and the first global log flush sequence

10
number;

performing one or more second update operations of a
second transaction on a second database object in a
second table by a second node of the plurality of
15 nodes, wherein the first transaction is required to be
committed by the first node before the second trans-
action is performed by the second node because the
second transaction is logically dependent on the first
transaction and the first database object is different
20 than the second database object;

writing one or more second log records for the second

update operations into a second local buffer of the

second node, the second log records comprising sec-

ondlocal virtual timestamps indicating an order of the

25 second update operations, wherein the first and the

second local virtual timestamps do not reflect a

required commit order for the first and the second
transactions;

in response to determining that a second log flush to

30 write the second log records to the global persistent
storage is to be performed, obtaining from the log
flush sequence server a second global log flush
sequence number to correspond to the second log

i flush;

inserting the second global log flush sequence number
into the second log records;

performing the second log flush to write the second log
records in the second local buffer to the global persis-
40 tent storage, wherein the second log records written to
the global persistent storage comprise the second
local virtual timestamps and the second global log
flush sequence number; and

merging the second log records with the first log records
45 in the global persistent storage, wherein the first glo-
bal log flush sequence number and the second global
log flush sequence number indicate a commit order of
the first and the second transactions.

12. The system of claim 11, wherein the computer readable

> program code is further configured to:

determine that the database recovery process is to be per-
formed;

in response to determining that the database recovery pro-
53 cess is to be performed, obtain a last stored database
image;
determine a lowest global log flush sequence number
occurring after the database image was stored;

¢ determine log records in the global persistent storage com-
prising the lowest global log flush sequence number, the
determined log records comprising the lowest global log
flush sequence number further comprising associated
local virtual timestamps; and

65 perform operations in the log records comprising the low-
est global log flush sequence number in an order accord-
ing to the associated local virtual timestamps.

US 9,229,970 B2

13

13. The system of claim 12, wherein the computer readable
program code is further configured to:

determine a next lowest global log flush sequence number;

determine a second set of log records in the global persis-

tent storage comprising the next lowest global log flush
sequence number, the second set of log records further
comprising a second set of associated local virtual
timestamps; and

perform operations in the second set of log records com-

prising the next lowest global log flush sequence number
in an order according to the second set of associated
local virtual timestamps.

14. The system of claim 11, wherein the computer readable
program code configured to insert the first global log flush
sequence number into the first log records is further config-
ured to:

insert the first global log flush sequence number into each

of' the first log records in the first local buffer.

15. The system of claim 11, wherein the computer readable
program code configured to insert the first global log flush
sequence number into the first log records is further config-
ured to:

insert the first global log flush sequence number into a

single location associated with all of the first log records
in the first local buffer.

16. A method for recovering operations from log records in
a shared database system, comprising:

determining that a database recovery process is to be per-

formed for the shared database system wherein a proper
ordering for the database recovery process is maintained
for logically dependent operations that do not share
database objects;

in response to determining that the database recovery pro-

cess is to be performed, obtaining a last stored database
image;
determining a lowest global log flush sequence number
occurring after the database image was stored;

determining one or more first log records in a global per-
sistent storage shared by a plurality of nodes comprising
the lowest global log flush sequence number, wherein
the lowest global log flush sequence number was
assigned to correspond to a first log flush from a first
local buffer of a first node of a plurality of nodes in the
shared database system to the global persistent storage,
the first log records further comprising first virtual
timestamps local to the first node and corresponding to
first operations of a first transaction performed on a first
database object in a first table by the first node, wherein
the first virtual timestamps indicate an order of the first
operations;

5

10

15

20

25

30

35

40

45

14

performing the first operations in the first log records in an
order according to the first virtual timestamps;

after performing the first operations, determining a next
lowest global log flush sequence number;

determining one or more second log records in the global
persistent storage comprising the next lowest global log
flush sequence number, wherein the next lowest global
log flush sequence number was assigned to correspond
to a second log flush from a second local buffer of a
second node of the plurality of nodes to the global per-
sistent storage, the second log records further compris-
ing second virtual timestamps local to the second node
and corresponding to second operations of a second
transaction performed on a second database object in a
second table by the second node, wherein the second
virtual timestamps indicate an order of the second opera-
tions; and

performing the second operations in the second log records
in an order according to the second virtual timestamps,

wherein the first transaction is required to be committed
before the second transaction is performed because the
second transaction is logically dependent on the first
transaction and the first database object is different than
the second database object, wherein the first virtual
timestamps and the second virtual timestamps do not
reflect a commit order for the first and the second trans-
actions, wherein the lowest global log flush sequence
number and the next lowest global log flush sequence
number indicate the commit order of the first and second
transactions.

17. The method of claim 1, wherein the first transaction on
the first database object in the first table by the first node is not
observable by the second node until the first records are
written to the global persistent storage.

18. The product of claim 6, wherein the first transaction on
the first database object in the first table by the first node is not
observable by the second node until the first records are
written to the global persistent storage.

19. The system of claim 11, wherein the first transaction on
the first database object in the first table by the first node is not
observable by the second node until the first records are
written to the global persistent storage.

20. The method of claim 16, wherein the first transaction on
the first database object in the first table by the first node was
not observable by the second node until the first records are
written to the global persistent storage.

#* #* #* #* #*

